Acousto-Optic Modulator Driver

Including: Basic Modulator Alignment

Instruction Manual

RFA213 Series

Models -
RFA213-z

Options -z:

- L : active low digital modulation (gate) no connection RF disabled
- V : 0-5V analog modulation range
- A : analog modulation only. No RF gate
- D : digital modulation only. No RF gate
- R : coolant fittings on rear face

ISOMET CORP, 5263 Port Royal Rd, Springfield, VA 22151, USA.
Tel: (703) 321 8301, Fax: (703) 321 8546, e-mail: isomet@isomet.com WWW.ISOMET.com
ISOMET (UK) Ltd, 18 Llantarnam Park, Cwmbran, Torfaen, NP44 3AX, UK.
Tel: +44 1633-872721, Fax: +44 1633 874678, e-mail: isomet@isomet.co.uk

ISOMET

1. GENERAL

The RFA213 is a combined Analog Driver and Power Amplifier is a fixed frequency RF power source specifically designed to operate with Isomet Raman-Nath acousto-optic devices such as the Q1337-G13L-3 series. The driver accepts two independent digital and analogue modulating signals and provides a double-sideband amplitude modulated RF output to the acousto-optic modulator. A summary of the driver specification is shown in the following table:

Model	Center Frequency	Output Power
RFA213	13.56 MHz	$>50.0 \mathrm{Watt}$

Figure 2 is a functional block diagram of the driver. The center frequency of the driver is determined by the free-running quartz-crystal oscillator. This frequency is accurate to within $\pm 25 \mathrm{ppm}$ and its stability is better than $\pm 30 \mathrm{ppm}$; the oscillator is not temperature stabilized.

A high-frequency, diode ring modulator is used to amplitude-modulate the RF carrier. The single turn potentiometer provides gain control for adjusting the maximum r-f power at the Driver output.

A solid state switch provides the Digital Modulation or RF Gating function. A TTL high level will gate the RF ON. The MMIC r-f pre-amplifier stage isolates the low level modulation and control circuitry from the power amplifier stage.

The rise and fall times for the amplifier from either modulation input is identical (approx 200nsec).

The video analog input level must not exceed 15 volts
The digital input level must not exceed 7 volts

This amplifier is designed to operate at full rated power into a 50Ω load with 100% duty cycle.

ISOMET

Water cooling is mandatory. The heatsink temperature must not exceed $70^{\circ} \mathrm{C}$.

SERIOUS DAMAGE TO THE AMPLIFIER MAY RESULT IF THE TEMPERATURE EXCEEDS $70^{\circ} \mathrm{C}$. SERIOUS DAMAGE TO THE AMPLIFIER MAY ALSO RESULT IF THE RF OUTPUT CONNECTOR IS OPERATED OPEN-CIRCUITED OR SHORT-CIRCUITED.

A low impedance d-c power source is required. The operating voltage is $+24 \mathrm{~V}(+28 \mathrm{Vdc} \mathrm{MAX})$ at a current drain of approximately 5.0A. The external power source should be regulated to $\pm 2 \%$ and the power supply ripple voltage should be less than 200 mV for best results.

Higher RF output power is achieved at 28 Vdc .

The output power level is set by the power adjust potentiometer (PWR ADJ)
NOTE : Maximum power = fully clockwise

1.1 ANALOG MODULATION

To intensity modulate a laser beam in an acousto-optic modulator requires that the input RF carrier voltage (power) be varied according to the video or baseband information. From the viewpoint of intensity modulation, the deflection efficiency equation is normalized as:

$$
\mathrm{i}_{1} \quad=\quad \sin ^{2}\left(\mathrm{kE} \mathrm{RF}_{\mathrm{RF}}\right)
$$

where i_{1} is the instantaneous intensity in the first order diffracted beam and $E_{R F}$ is the instantaneous RF envelop voltage across the matched transducer.

In effect, the acousto-optic interaction demodulates the RF carrier, transforming the modulation envelop (baseband signal) into intensity variation of the first order diffracted laser beam.

Figures 3 and 5 show the main AO modulator parameters

ISOMET

LED INDICATORS
The front panel LEDs serve to indicate a number of possible operating states.
The LEDs [C] and [D] illuminate when the DC power is applied and the Interlocks are valid.

LED's

- [A] Shows GREEN when the RF output is live PROVIDED:
a) the modulation duty cycle is more than 20% (approx).
b) the RF CW power is $>20 \%$ (approx) of the driver maximum power
- [B] Not applicable - for future options
- [C] shows RED when the DC power is applied
- [D] shows GREEN when the (thermal) Interlocks are enabled

Caution, the RF output may be live even if these LED's are not illuminated.

LEDs Off

The LEDs [C] and [D] will not illuminate if :
a) the internal driver thermal interlock switch is open (Over temperature fault)
b) the AOM thermal interlocks switch is open (Over temperature fault)
c) the AOM thermal interlock is not connected to the driver interlock input
d) the DC supply is off.

The thermal interlocks will reset once the AO device and / or RF driver are cooled below the switching temperature.

- The driver thermal switch over temperature is $50 \mathrm{deg} C$
- The AOM thermal switch over temperature is 32deg C

The hysterisis of the thermal switches is 7-10deg C.
Once in a fault state the coolant temperature may need to be reduced to reset the thermal switches.

ISOMET

3. INSTALLATION AND ADJUSTMENT
3.1 Connect cooling water to the RFA213 at a flow of more than 1 litre/minute and at <25 deg.C Connect cooling water to the AO device .

Due to the high RF power dissipated in the Q1337 AO modulator, it is paramount that the device is operated only when water cooling is circulating.

For optimum AO performance ensure the flow rate is not less than 1 litres/minute at <20 deg.C
3.2 With no d-c power applied, connect the +24 V (or +28 V) DC to the screw terminals DO NOT APPLY POWER.
3.3 Connect the RF output BNC jack to the acousto-optic modulator (or a $50 \Omega \mathrm{RF}$ load, if it is desired to measure the modulator RF output power).
3.4 Connect the Interlock of the acousto-optic modulator (SMA, SMC or mini 3pin connector) to the enable inputs on the 9-pin D-type connector of the RFA. Connect pin 4 of ' D ' to the centre pin of the SMA/SMC and pin 5 of 'D' to the outer ground of the SMA.

The interlock connection becomes open circuit disabling the RF output, if the temperature of the modulator exceeds $32^{\circ} \mathrm{C}$ or the internal driver temperature exceeds $70^{\circ} \mathrm{C}$. LED indicator illuminates when the Interlocks are closed and the RF is enabled (see Section 2). In addition, a CMOS 'interlock valid' signal output is provided on pin 1 of the D-type connector for remote monitoring purposes.

Adjustment of the RF output power is best done with amplifier connected to the acousto-optic modulator. The Amplifier maximum output power is factory preset to approx 25 W .

The optimum RF power level required for the modulator to produce maximum first order intensity will be different at various laser wavelengths. Applying RF power in excess of this optimum level will cause a decrease in first order intensity (a false indication of insufficient RF power) and makes accurate Bragg alignment difficult. It is therefore recommended that initial alignment be performed at a low RF power level.

Locate the PWR ADJ access on the driver end plate.

ISOMET

3.7 With an insulated alignment tool or screwdriver rotate the PWR ADJ potentiometer fully anticlockwise (CCW), then clockwise (CW) approx 1/4 turn.
3.8 Apply DC to the amplifier.
3.9 Apply a 10.0 V constant modulation signal to the modulation inputs on the D-type connector of the RFA. Connect pin 8 of ' D ' to the signal and pin 9 of ' D ' to the signal return.
3.9.1 Apply a constant TTL high level to the digital modulation inputs on the D-type connector. Connect pin 6 of the ' D ' to the signal and pin 7 of the ' D ' to the signal return.

Input the laser beam toward the centre of either aperture of the AOM. Ensure the polarization is horizontal with respect to the base and the beam height does not exceed the active aperture height of the AOM.

Start with the laser beam normal to the input optical face of the AOM and if necessary very slowly rotate the AOM (either direction). See Figure 4 below for one possible configuration.
3.10 Observe the diffracted first-order outputs from the acousto-optic modulator and the undeflected zeroth order beam. Adjust the angle (rotate the modulator) to minimize the zero order beam intensity.
3.11 After the angle has been optimized, slowly increase the RF power (rotate PWR ADJ CW) until minimum zero order intensity is obtained.
3.12 The driver is now ready for use for modulation using both the digital and the analog inputs.

ISOMET

4. MAINTENANCE

4.1 Cleaning

It is of utmost importance that the optical apertures of the deflector optical head be kept clean and free of contamination. When the device is not in use, the apertures may be protected by a covering of masking tape. When in use, frequently clean the apertures with a pressurized jet of filtered, dry air.

It will probably be necessary in time to wipe the coated window surfaces of atmospherically deposited films. Although the coatings are hard and durable, care must be taken to avoid gouging of the surface and leaving residues. It is suggested that the coatings be wiped with a soft ball of brushed (short fibres removed) cotton, slightly moistened with clean alcohol. Before the alcohol has had time to dry on the surface, wipe again with dry cotton in a smooth, continuous stroke. Examine the surface for residue and, if necessary, repeat the cleaning.

4.2 Troubleshooting

No troubleshooting procedures are proposed other than a check of alignment and operating procedure. If difficulties arise, take note of the symptoms and contact the manufacturer.

4.3 Repairs

In the event of deflector malfunction, discontinue operation and immediately contact the manufacturer or his representative. Due to the high sensitive of tuning procedures and the possible damage which may result, no user repairs are allowed. Evidence that an attempt has been made to open the optical head will void the manufacturer's warranty.

ISOMET

RFA 2×1 Standard Version

Connection Summary

1.0

'D' Type Control Connection

Signal	Type	Pin out connection
Digital Modulation / GATE TTL high $(>2.5 \mathrm{~V})=\mathrm{ON}$ TTL low ($<0.8 \mathrm{~V}$) or no connection $=$ Off	Input	Signal pin 6 Return pin 7
Analogue Modulation 0.0 V (off) to 10.0 V (on)	Input	Signal pin 8 Return pin 9
Interlock (connect to AO modulator 'INT')	Input	Signal pin 4 Return pin 5
'Interlock Valid' monitor (CMOS compatible $\sim 15 \mathrm{~V}=\mathrm{OK})$	Output	Signal pin 1 Return pin 2

Minimum Connections shown below:

AOM Thermal Interlock Plug
(OK = connected contacts 1-2)

Notes:

Both Digital GATE and Analog Modulation signals need to be applied.
The interlock signal must be connected. Contacts closed for normal operation.
$2.0 \quad$ Mounting Holes
$4 \times \mathrm{M} 5$

ISOMET

Figure 1: Driver Installation

Figure 2: Driver Block Diagram

RF Carrier

Modulation Signal Input

Amplitude Modulated RF Output
Typical analog modulation RF waveforms are shown above.
For the RFA213 and similar drivers, the modulation input is a combination of analog and digital control as illustrated below.

Figure 3: Typical Analog Modulation Waveforms

Schematic of the Isomet 1209-7 Germanium Modulator and RFA2x1 RF Driver

Figure 4: Typical Connection Configuration

Basic AO Modulator Parameters

The input Bragg angle, relative to a normal to the optical surface and in the plane of deflection is:

$$
\theta_{\text {BRAGG }}=\frac{\lambda . f \mathrm{fc}}{2 . \mathrm{v}}
$$

The separation angle between the Zeroth order and the First order is:

$$
\theta_{\text {SEP }} \quad=\quad \frac{\lambda . \mathrm{fC}}{\mathrm{~V}}
$$

Optical rise time for a Gaussian input beam is approximately:

$$
\mathrm{t}_{\mathrm{r}} \quad=\frac{0.65 . \mathrm{d}}{\mathrm{v}}
$$

where:

$$
\begin{array}{ll}
\lambda=\text { wavelength } & \\
\mathrm{fc}=\text { centre frequency }=\text { FC } \mathrm{MHz} & \\
\mathrm{v}=\text { acoustic velocity of interaction material } & =5.5 \mathrm{~mm} / \mathrm{usec}(\mathrm{Ge}) \\
& =5.7 \mathrm{~mm} / \mathrm{usec} \text { (Qua) } \\
\mathrm{d}=1 / \mathrm{e}^{2} \text { beam diameter } &
\end{array}
$$

Figure 5. Modulation System

